Cool Cap Engineer

Engineering by an anime nerd

Projects: Arduino 24V Brushed DC Motor Controller Shield Update #4

Leave a comment

wpid-20131228_181153.jpgWell, this is a first. This is kind of an embarassing first, but a first nevertheless. In my two years blogging on Cool Cap Engineer, I could never get past a third update for any of my projects. A lot of the times, I cancelled a project due to the huge time commitment for a project, or the lack of knowledge on the project’s topic. With that said: here’s the 4th update for the 24V Brushed DC Motor Controller Shield project.

In my last post, I mentioned that the original 24V Brushed Motor Controller circuit needed some improving. One of the crucial improvements I mentioned was adding overvoltage and undervoltage protection circuitry. Because of the power supply protection circuitry additions, I decided to look into the LM2574: a 12V/.5A Buck Regulator IC. By using the LM2574, not only will I be able to add the protection circuitry by manipulating the on/off pin of the regulator, but its surprisingly more efficient than the 7815 linear regulator I was using.I could not emphasize how efficient this regulator is. No matter how much I loaded the regulator, it still delivered 11.92V  to the load. Even when I loaded the regulator with a 24 ohm resistor, it still maintained 11.92V. Of course, the performance will change depending on huge temperature variations, but I’m assuming the final shield will be used at room temperature.

wpid-20131229_145125.jpg

Just for the sake of curiosity, I wanted to see how the regulator performed when I loaded it with an Arduino, which typically draws 30-40ma. To my surprise I regulator delivered 11.97V to the Arduino. So I think I will use the LM2517 in the final design.

wpid-20131229_145616.jpgThe final thing I was thinking doing for the project was implementing the MC33035 brushless motor controller on the shield. The MC33035 can not only control DC motors, but it comes with a current limit. If I have time this week, I will implement the undervoltage and overvoltage protection circuitry with the 12V Buck regulator circuit and start working on the PCB for the shield, which will control 1 motor. Once I test the shield, I will modify the shield to control 2 motors.

Well, that’s it for me this week. Feel free to post a question, comment, or concern and I will do my best to respond back to you. See you guys next week and Happy New Years!

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s